SUMMARY - EXAM I- MAT 102/202
PREPARED BY: HIBA OTHMAN

Method	When to Use	Formula
Volumes by slicing	When the cross section is specified	$V=\int_{x_{1}}^{x_{2}} A(x) d x$ or $V=\int_{y_{1}}^{y_{2}} A(y) d y$, where - $A=\pi R^{2}$ or $A=\pi \frac{D^{2}}{4}$ when the cross-section is a circle (R : radius, D : diameter) - $A=s^{2}$ or $A=\frac{d^{2}}{2}$ when the cross-section is a square (s : side or base, d : diagonal) - $A=\frac{b}{4}^{2} \sqrt{3}$ or $A={\frac{h^{2}}{\sqrt{3}}}^{2}$ when the crosssection is an equilateral triangle (b : side or base, h : height)
Volumes by Disks	When two functions are revolved about an axis to constitute one region running between both functions (the disk method gives a solid with no empty space inside)	- $V=\int_{x_{1}}^{x_{2}} \pi(f(x)-g(x))^{2} d x$ to get the volume about the x -axis - $V=\int_{y_{1}}^{y_{2}} \pi(f(y)-g(y))^{2} d y$ to get the volume about the y -axis
Volumes by Washers	When two functions are revolved about an axis and the volume between them is required (the washer method gives a solid with some empty space inside) Note: Rather than drawing to determine which of the functions is above the second, we use absolute value.	- $V=\left\|\int_{x_{1}}^{x_{2}} \pi\left(f^{2}(x)-g^{2}(x)\right) d x\right\|$ to get the volume about the x -axis - $V=\left\|\int_{y_{1}}^{y_{2}} \pi\left(f^{2}(y)-g^{2}(y)\right) d y\right\|$ to get the volume about the y-axis
Volumes by Cylindrical Shell	When two functions are revolved about an axis and there are points of intersection between the graphs of the functions and the axis.	- $V=\left\|\int_{x_{1}}^{x_{2}} 2 \pi x(f(x)-g(x)) d x\right\|$ to get the volume about the y -axis

SUMMARY - EXAM I- MAT 102/202
PREPARED BY: HIBA OTHMAN

	Note: Rather than drawing to determine which of the functions is above the second, we use absolute value.
Length	To calculate the length of functions

- $V=\left|\int_{y_{1}}^{y_{2}} 2 \pi y(f(y)-g(y)) d y\right|$ to get the
volume about the x -axis
- $V=\left|\int_{x_{1}}^{x_{2}} 2 \pi(x-k)(f(x)-g(x)) d x\right|$ to get the volume about the line $x=\mathrm{k}$
- $V=\left|\int_{y_{1}}^{y_{2}} 2 \pi(y-k)(f(y)-g(y)) d y\right|$ to get the volume about the $y=\mathrm{k}$
- $L=\int_{x_{1}}^{x_{2}} \sqrt{1+\left(y^{\prime}\right)^{2}} d x$ when $y=f(x)$
- $L=\int_{y_{1}}^{y_{2}} \sqrt{1+\left(x^{\prime}\right)^{2}} d y$ when $x=f(y)$
- $L=\int_{t_{1}}^{t_{2}} \sqrt{\left(x_{t}^{\prime}\right)^{2}+\left(y_{t}^{\prime}\right)^{2}} d t$ when parametric equations are given $x=f(t) \& y=g(t)$

