SUMMARY - EXAM I- MAT 102/202

PREPARED BY: HIBA OTHMAN

Method	When to Use	Formula
Volumes by slicing	When the cross section is specified	$V = \int_{x_1}^{x_2} A(x) dx \text{ or } V = \int_{y_1}^{y_2} A(y) dy \text{, where}$ • $A = \pi R^2 \text{ or } A = \pi \frac{D}{4}^2 \text{ when the cross-section}$ is a circle (<i>R</i> : radius, <i>D</i> : diameter) • $A = s^2 \text{ or } A = \frac{d}{2}^2 \text{ when the cross-section is a}$ square (<i>s</i> : side or base, <i>d</i> : diagonal) • $A = \frac{b}{4}^2 \sqrt{3} \text{ or } A = \frac{h}{\sqrt{3}}^2 \text{ when the cross-section is an equilateral triangle (b: side or base, h: height)}$
Volumes by Disks	When two functions are revolved about an axis to constitute one region running between both functions (the disk method gives a solid with no empty space inside)	• $V = \int_{x_1}^{x_2} \pi (f(x) - g(x))^2 dx$ to get the volume about the x-axis • $V = \int_{y_1}^{y_2} \pi (f(y) - g(y))^2 dy$ to get the volume about the y-axis
Volumes by Washers	When two functions are revolved about an axis and the volume between them is required (the washer method gives a solid with some empty space inside) <u>Note:</u> Rather than drawing to determine which of the functions is above the second, we use absolute value.	• $V = \left \int_{x_1}^{x_2} \pi (f^2(x) - g^2(x)) dx \right $ to get the volume about the x-axis • $V = \left \int_{y_1}^{y_2} \pi (f^2(y) - g^2(y)) dy \right $ to get the volume about the y-axis
Volumes by Cylindrical Shell	When two functions are revolved about an axis and there are points of intersection between the graphs of the functions and the axis.	• $V = \left \int_{x_1}^{x_2} 2\pi x (f(x) - g(x)) dx \right $ to get the volume about the y-axis

SUMMARY - EXAM I- MAT 102/202

PREPARED BY: HIBA OTHMAN

	Note: Rather than drawing to determine which of the functions is above the second, we use absolute value.	• $V = \left \int_{y_1}^{y_2} 2\pi y (f(y) - g(y)) dy \right $ to get the volume about the x-axis • $V = \left \int_{x_1}^{x_2} 2\pi (x - k) (f(x) - g(x)) dx \right $ to get the volume about the line x=k • $V = \left \int_{y_1}^{y_2} 2\pi (y - k) (f(y) - g(y)) dy \right $ to get the volume about the y=k
Length	To calculate the length of functions	• $L = \int_{x_1}^{x_2} \sqrt{1 + (y')^2} dx$ when $y = f(x)$ • $L = \int_{y_1}^{y_2} \sqrt{1 + (x')^2} dy$ when $x = f(y)$ • $L = \int_{t_1}^{t_2} \sqrt{(x'_t)^2 + (y'_t)^2} dt$ when parametric equations are given $x = f(t)$ & $y = g(t)$